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9.1 Adaboost - Continue

We will finish something that we did not have a chance to complete last week.
We would like to consider a very simple class of weak learners, where their predictions

are independent. Our goal has two folds: We like to see that the complexity bound we get
(in terms of the required number of iterations to achieve a certain accuracy) is very similar
to AdaBoost, showing that the number of iteration in AdaBoost cannot be reduced. Also, in
this simple setting the intuitive majority rule would do the work, in contrast to the general
case where we needed to continuously modify the distribution.

Model Each time t we get a new weak learner ht, such that for any valid (x, y) we have
Pr[ht(x) = y] = 0.5+γ. Note that there is no need to have a distribution D, since we require
it to hold for each x independently.

We will define, given the ht, a majority classifier,

H(x) = sign(
T∑
t=1

ht(x))

Our goal is to derive a bound on the error of H as a function of γ and T .
An error of H, i.e., H(xi) 6= yi, whenever the number of correct classification by the T

hypotheses ht is less than T/2. Our stochastic assumption implies that we can compute the
error for each x, independently. The error bound would be derived using a Chernoff bound.
Recall, that given n random variables X1, , . . . , Xn which are i.i.d., we have that

Pr[
n∑
i=1

Xi > µ+ λ] < e−λ
2/n and Pr[

n∑
i=1

Xi < µ− λ] < e−λ
2/n

where µ = E[
∑n

i=1Xi] = nE[Xi].
In our case, the expected number of correct predictions is µ = T (0.5 + γ) = T/2 + γT .

Let Xt be a random variable indicating whether ht(xi) is correct, i.e., Xt = Iht(xi)=yi . This
implies that,

Pr[H(xi) 6= yi] = Pr[
T∑
t=1

Xt ≤ T/2] = Pr[
T∑
t=1

Xt ≤ µ− γT ] < e−γ
2T
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9.2 Linear Regression

Our basic model is a linear function, i.e., hθ(x) = θtx, where θ are the parameters we like to
learn for the linear function. The examples are (xi, yi). We can model this by a matrix

X =

 · · · x1 · · ·
...

...
...

· · · xm · · ·

 =


...

...
X1 · · · Xd

...
...


where Xj are the values of attribute j. The labels are

y =

 y1
...
ym


We would like to find the parameter θ that minimizes the loss, namely

min
θ

m∑
i=1

loss(hθ, (xi, yi)) = min
θ

m∑
i=1

(hθ(xi)− yi))2 assume square loss

= min
θ

m∑
i=1

(θtxi − yi))2 linear predictions

= min
θ
‖Xθt − Y ‖22

Alternatively, we have that

Xθt = θ1X
1 + · · ·+ θdX

d

For example, if x1 = (1, 2), x2 = (3, 4), x3 = (5, 6), let θ = (a, b).

Xθt =

 1 2
3 4
5 6

( a
b

)
=

 a+ 2b
3a+ 4b
5a+ 6b

 = a

 1
3
5

+ b

 2
4
6


Therefore, we are looking for the linear combination (defined by θ) of the columns of X

that is closest to y.

9.2.1 feature normalization

Unlike the nearest neighbor (NN) we will show that feature normalization (more precisely,
scaling) does not influence the regression.
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Let θ∗ be the value of θ which minimized the square error. The minimizer can be viewed
as the projection of y to the space span by {Xj}j=1,...,d. Recall that we have Xj(Y −Xθ∗) = 0.

Assume we scale each coordinate j by some constant aj (therby, ’normalizing’ the feature
j). This implies that the new feature vector for j is X̃j = ajX

j. We are looking for the
solution of the new system, denoted by θ̃∗.

θ̃∗ = arg min
θ̃
‖X̃θ̃t − Y ‖22

Note that

X̃θ̃t = a1θ̃1X
1 + · · ·+ adθ̃dX

d

This again is a linear combination of the columns of X and therefore we will find the same
combination closest to y as before, implying that θ̃∗i = aiθ

∗
i . Since we have no restriction

on θ essentially we recover the same solution and have the same predictions (although the
specific values of θ∗ will be scaled accordingly - by the same scaling applied to the features).

Challenge Question: What will happen in Ridge and Lasso regression?

9.2.2 Logistic regression

Assume we need to predict a Boolean outcome y ∈ {0, 1}. While this is a classical classi-
fication setting, we can still use regression. The problem is that the linear function of the
regression can map values to be larger than 1 or below 0. we like to map any real number z
to a value in [0, 1]. One such function is g(z) = 1

1+e−z .
We will now give a maximum likelihood interpretation and use it to learn θ.

hθ(x) = Pr[y = 1|x; θ] = g(θtx)

We will learn θ using ML model. The probabilities in the model will be

Pr[y|x; θ] = (hθ(x))y(1− hθ(x))1−y

The likelihood function would be

L(θ|X, Y ) = Pr[Y |X; θ] =
m∏
i=1

(hθ(xi))
yi(1− hθ(xi))1−yi

The log likelihood is

`(θ|X, Y ) =
m∑
i=1

yi log(hθ(xi)) + (1− yi) log(1− hθ(xi))
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We now present an online model for this. Consider sample (xi, yi). Let

F (θ) = yi log(hθ(xi)) + (1− yi) log(1− hθ(xi))

Maximizing over θ we consider the gradient in the direction of the jth feature:

dF (θ)

dθj
=

yi
hθ(xi)

g′(θtxi)xj −
1− yi

1− hθ(xi)
g′(θtxi)xj

Computing the derivative of g we have

g′(z) =
e−z

(1 + e−z)2
=

1

1 + e−z
· e−z

1 + e−z
= g(z)(1− g(z))

Therefore we have

dF

dθj
=

yi
g(θtxi)

g(θtxi)(1− g(θtxi)xij −
1− yi

1− g(θtxi)
g(θtxi)(1− g(θtxi))xij

=yi(1− g(θtxi)xij − (1− yi)g(θtxi)xij

=(yi − g(θtxi))xij

The update of θ at the kthi iteration is (moving at the direction of the gradient, since we
maximize the log-likelyhood),

θk+1 = θk + α(yk − hθk(xk))xk

Note that this has the same form as the update for linear regression (however the updates
are essentially different sine the underlying hθ are different).


