Introduction to Machine Learning Fall Semester, 2013

Recitation 6: November 17

Lecturer: Mariano Schain Scribe: ym

6.1 SVM optimization

In the lecture we saw the following optimization problem, for a maximum margin classifier.

min—w'w
w,b 2

st. yp(w'z, +b)>1 VYn=1,...,N

where w € R? is the weight vector, b € R is the bias, and (z,,y,) are the examples and
z, € R and y, € {+1,—1}.
The first step is to write the Lagrangian. In general, for a program

minf(X)
st. gi(x) <OVi=1,...,N

the Lagrangian is

L(z,a) = f(z) + Zoﬁgi(x)

where «a are called the Lagrangian multipliers.
For our SVM program we get

N
1
L(w,b,a) = §wtw - Zan(yn(wtxn +b)—1)
n=1

We now take the derivative of L and equate it with zero to minimize over w and b.

N N
Vol =w— Z UlnTp =0 =— w= Z QU YnTy
n=1 n=1

this give us a way to compute w given a. We call this the w-constraint. For b we have

d N
%L:—Zanyn:O =  apy, =0

n=1
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We call this the b-constraint.
Plugging the constraints back in L we have

N N N
1
L(w, b, a) :iwtw —w' (Z anynxn> —b (Z Oényn) +(Z Oén)
n=1 n=1 n=1

vV vV
w 0

! N
=— Ewtw + (; ay,)

1 N N

=— 5(2 ayixi) ( ' ay;x;) + (Z )

n=1

1 N N N
= — 3 Z Z %Oéjyjyil’?xj + (Z )
n=1

i=1 j=1

where we have the constraints ZnNzl Y, = 0 and Vn we have «,, > 0.
Formally, the dual problem is

N N N
. 1
max L(w,b,a) = min 5 ; ; O Y YT T — (; Q)
N
s.t. Z apyn =0
n=1
Vn a, >0
6.2 Unrealizable case
We add slack variables &, to ensure feasibility. We have,
1 N
L 4
2%2210 w+C ; &n
st. yp(w'z, +b)>1-&  Vn=1,...,N Vn &, >0

We can now write the Lagrangian

N

N N
L(’LU, b7£7 Q, ’I“) = %wtw + ngn - Z Oén(yn(wtl’n + b) -1+ Sn) - ZTnfn
n=1

n=1 n=1
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We now take the derivatives

N N
Vol =w— Z UlnTp =0 = w= Z QU YnTy
n=1 n=1

identically as before. For b we have

d N
%L: —;anyn =0 = aw,=0
also as before.
For &, we have
iL:C'—ozn—rn:O = a,=C-r,
d&n
Substituting the constraints in L we get
L(w, b, a) zlwtw—wt(ia YnT )—b(ia Y )+(ia )—l—iﬁ (C—ay —1)
o 2 _n=l1 R =1 e n=1 ! n=1 n+

vV vV
w 0
N

L NN
=—3 Z Z GO YT + (Z )

i=1 j=1 n=1

identically as before. The only difference is that now we have two additional constraints,
r, > 0 and a,, = C' —r,. Since r, does now appear in the optimization, we can drop it, and
join then two constraints to «,, < C. (For any solution of «,, we can set r,, = C' — «,.)

Note that when we have an error in classification or in the margin, then &, > 0 and
therefore r, = 0, which implies that o, = C.

For C' > «a,, > 0 we have r, > 0 and therefore &, = 0. Since «,, > 0 this implies that it
is a support vector.

For o, = 0 we have r,, = C' and therefore &, = 0 and since «,, = 0 this is not an support
vector.

6.3 Sequential Minimization Optimization (SMO)

For a convex program, we can solve it by doing a gradient ascent, simply choosing a sin-
gle coordinate and optimizing the value. In our case, since we have a constraint that
22721 any, = 0, relaxing a single variable will be forced back to the same solution. For
this we need to relax at least two variables.
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Without loss of generality assume we selected a; and «s. From the constraint we have,

N
a1y + QoY = — Zaz‘yi =F
i=3

where F is some constant (since we keep «; for i > 3 fixed). Now we can set

oy = (F - Oé2y2)y1

This implies that in the maximization we have a single variable as we are maximizing over.
The weight function is now

w((F — aoy2)y1, ag, as, ..., an)

which is a quadratic function in ay. (Recall that we keep a; for ¢ > 3 fixed).
We can now maximize it as an unconstraint quadratic form and find a maximizer a,. We
now need to consider the constraints

OSOQSC

and
0<(F—oyp)yn=a0a; <C

the two constraints give a feasible range [L, H] of as. We can now test the unconstraint
solution @ to derive the optimal solution a3, as follows,

1. If &y € [L, H] then o = as.
2. Ifay < L < H then o = L.

3. f L < H < &y then aj =H.



