Introduction to Machine Learning

Fall Semester, 2013

Recitation 6: November 17

Lecturer: Mariano Schain Scribe: ym

6.1 SVM optimization

In the lecture we saw the following optimization problem, for a maximum margin classifier.

$$\min_{w,b} \frac{1}{2} w^t w$$

s.t. $y_n(w^t x_n + b) \ge 1 \quad \forall n = 1, ..., N$

where $w \in \mathbb{R}^d$ is the weight vector, $b \in \mathbb{R}$ is the bias, and (x_n, y_n) are the examples and $x_n \in \mathbb{R}^d$ and $y_n \in \{+1, -1\}$.

The first step is to write the Lagrangian. In general, for a program

$$\min f(X)$$

s.t. $g_i(x) \le 0 \forall i = 1, \dots, N$

the Lagrangian is

$$L(x,\alpha) = f(x) + \sum_{i=1}^{N} \alpha_i g_i(x)$$

where α are called the Lagrangian multipliers.

For our SVM program we get

$$L(w, b, \alpha) = \frac{1}{2}w^{t}w - \sum_{n=1}^{N} \alpha_{n}(y_{n}(w^{t}x_{n} + b) - 1)$$

We now take the derivative of L and equate it with zero to minimize over w and b.

$$\nabla_w L = w - \sum_{n=1}^N \alpha_n y_n x_n = 0 \quad \Longrightarrow \quad w = \sum_{n=1}^N \alpha_n y_n x_n$$

this give us a way to compute w given α . We call this the w-constraint. For b we have

$$\frac{d}{db}L = -\sum_{n=1}^{N} \alpha_n y_n = 0 \implies \alpha_n y_n = 0$$

We call this the b-constraint.

Plugging the constraints back in L we have

$$L(w, b, \alpha) = \frac{1}{2} w^t w - w^t \underbrace{\left(\sum_{n=1}^N \alpha_n y_n x_n\right)}_{w} - b \underbrace{\left(\sum_{n=1}^N \alpha_n y_n\right)}_{0} + \left(\sum_{n=1}^N \alpha_n\right)$$

$$= -\frac{1}{2} w^t w + \underbrace{\left(\sum_{n=1}^N \alpha_n\right)}_{w}$$

$$= -\frac{1}{2} (\sum_{i=1}^N \alpha_i y_i x_i)^t \underbrace{\left(\sum_{j=1}^N \alpha_j y_j x_j\right)}_{j} + \underbrace{\left(\sum_{n=1}^N \alpha_n\right)}_{n=1}$$

$$= -\frac{1}{2} \sum_{i=1}^N \sum_{j=1}^N \alpha_i \alpha_j y_j y_i x_i^t x_j + \underbrace{\left(\sum_{n=1}^N \alpha_n\right)}_{n=1}$$

where we have the constraints $\sum_{n=1}^{N} \alpha_n y_n = 0$ and $\forall n$ we have $\alpha_n \geq 0$. Formally, the dual problem is

$$\max_{\alpha} L(w, b, \alpha) = \min_{\alpha} \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{i} x_{i}^{t} x_{j} - (\sum_{n=1}^{N} \alpha_{n})$$
s.t.
$$\sum_{n=1}^{N} \alpha_{n} y_{n} = 0$$

$$\forall n \ \alpha_{n} > 0$$

6.2 Unrealizable case

We add slack variables ξ_n to ensure feasibility. We have,

$$\min_{w,b,\xi} \frac{1}{2} w^t w + C \sum_{n=1}^N \xi_n$$
s.t. $y_n(w^t x_n + b) \ge 1 - \xi_n \quad \forall n = 1, \dots, N$ $\forall n \ \xi_n \ge 0$

We can now write the Lagrangian

$$L(w, b, \xi, \alpha, r) = \frac{1}{2}w^{t}w + C\sum_{n=1}^{N} \xi_{n} - \sum_{n=1}^{N} \alpha_{n}(y_{n}(w^{t}x_{n} + b) - 1 + \xi_{n}) - \sum_{n=1}^{N} r_{n}\xi_{n}$$

We now take the derivatives

$$\nabla_w L = w - \sum_{n=1}^N \alpha_n y_n x_n = 0 \quad \Longrightarrow \quad w = \sum_{n=1}^N \alpha_n y_n x_n$$

identically as before. For b we have

$$\frac{d}{db}L = -\sum_{n=1}^{N} \alpha_n y_n = 0 \implies \alpha_n y_n = 0$$

also as before.

For ξ_n we have

$$\frac{d}{d\xi_n}L = C - \alpha_n - r_n = 0 \implies \alpha_n = C - r_n$$

Substituting the constraints in L we get

$$L(w, b, \alpha) = \frac{1}{2} w^{t} w - w^{t} \underbrace{\left(\sum_{n=1}^{N} \alpha_{n} y_{n} x_{n}\right)}_{w} - b \underbrace{\left(\sum_{n=1}^{N} \alpha_{n} y_{n}\right)}_{0} + \left(\sum_{n=1}^{N} \alpha_{n}\right) + \sum_{n=1}^{N} \xi_{n} \underbrace{\left(C - \alpha_{n} - r_{n}\right)}_{0}$$

$$= -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{j} y_{i} x_{i}^{t} x_{j} + \left(\sum_{n=1}^{N} \alpha_{n}\right)$$

identically as before. The only difference is that now we have two additional constraints, $r_n \geq 0$ and $\alpha_n = C - r_n$. Since r_n does now appear in the optimization, we can drop it, and join then two constraints to $\alpha_n \leq C$. (For any solution of α_n we can set $r_n = C - \alpha_n$.)

Note that when we have an error in classification or in the margin, then $\xi_n > 0$ and therefore $r_n = 0$, which implies that $\alpha_n = C$.

For $C > \alpha_n > 0$ we have $r_n > 0$ and therefore $\xi_n = 0$. Since $\alpha_n > 0$ this implies that it is a support vector.

For $\alpha_n = 0$ we have $r_n = C$ and therefore $\xi_n = 0$ and since $\alpha_n = 0$ this is not an support vector.

6.3 Sequential Minimization Optimization (SMO)

For a convex program, we can solve it by doing a gradient ascent, simply choosing a single coordinate and optimizing the value. In our case, since we have a constraint that $\sum_{n=1}^{N} \alpha_n y_n = 0$, relaxing a single variable will be forced back to the same solution. For this we need to relax at least two variables.

Without loss of generality assume we selected α_1 and α_2 . From the constraint we have,

$$\alpha_1 y_1 + \alpha_2 y_2 = -\sum_{i=3}^{N} \alpha_i y_i = F$$

where F is some constant (since we keep α_i for i > 3 fixed). Now we can set

$$\alpha_1 = (F - \alpha_2 y_2) y_1$$

This implies that in the maximization we have a single variable α_2 we are maximizing over. The weight function is now

$$w((F-\alpha_2y_2)y_1,\alpha_2,\alpha_3,\ldots,\alpha_N)$$

which is a quadratic function in α_2 . (Recall that we keep α_i for i > 3 fixed).

We can now maximize it as an unconstraint quadratic form and find a maximizer $\bar{\alpha}_2$. We now need to consider the constraints

$$0 < \alpha_2 < C$$

and

$$0 \le (F - \alpha_2 y_2) y_1 = \alpha_1 \le C$$

the two constraints give a feasible range [L, H] of α_2 . We can now test the unconstraint solution $\bar{\alpha}_2$ to derive the optimal solution α_2^* , as follows,

- 1. If $\bar{\alpha}_2 \in [L, H]$ then $\alpha_2^* = \bar{\alpha}_2$.
- 2. If $\bar{\alpha}_2 < L < H$ then $\alpha_2^* = L$.
- 3. If $L < H < \bar{\alpha}_2$ then $\alpha_2^* = H$.