
Introduction to Machine Learning Fall Semester, 2013

Lecture 6: November 17
Lecturer: Lior Wolf Scribe: ym

6.1 Support Vector Machine (SVM) classifiers

The Support Vector Machine (SVM) is perhaps the leading machine learning algorithm today
for binary classification problems. It is a high quality off-the-shelf classifier, that can adapt
to many ML settings. It provides both robustness and uniformity.

We will cover today the following topics:

• Review of linear classifiers

– Realizability = Linear separability.

– Revisiting Perceptron

• Support Vector machine (SVM) classifier

– Wide margin principle

– Derivation

– Dual form

– Slack variables

– Loss function

– Multi class item Practical advice

6.2 Review of Linear classifiers

6.2.1 Binary classification

We are given m training examples {(xi, yi)}i=1,N , where xi ∈ Rd and yi ∈ {+1,−1} is the
classification. We would like to learn a classifier f(xi) such that f(xi) ≥ 0 iff yi = +1 and
f(xi) < 0 iff yi = −1.

In Figure 6.1 we see an example which is clearly linear separable. In Figure 6.2 we see a
set of points which are not linearly separable. (In the next lecture, using kernels, we will see
how to deal with this specific cylindrical case.)

1

2 Lecture 6: November 17

Figure 6.1: Easy linear separable case Figure 6.2: Non-linearly separable case.

Figure 6.3: More examples of separable and non-separable cases.

A linear classifier has the form f(x) = wtx + b, where w ∈ Rd and b ∈ R.1 An example
in 2D is in Figure 6.4 and 3D in Figure 6.5. The parameter w is called the weights and is
normal to the separator, and the parameter b is called the bias. Unlike Perceptron, here the
roles of the weights w and the bias b will be different.

Figure 6.4: A linear separator in 2D

Figure 6.5: A linear separator in 3D

6.2.2 Perceptron - review

Given a linearly separable data (xi, yi) the perceptron algorithm finds a linear separator
f(x) = wtx+ b which separates the data points. The Perceptron algorithm works as follows:

1We denote wtx =
∑d

i=1 xiwi.

6.3. SELECTING A GOOD LINEAR SEPARATOR 3

1. Add b to the attributes, and a constant attribute of +1.

2. Initialize w = 0.

3. Cycle through the data points (xi, yi). For each error update w = w + yixi.

4. Terminate when there are no errors

It is clear that the perceptron algorithm only adds or subtracts points. Therefore, at any
time w =

∑N
i=1 αixi for some integers αi.

While the Perceptron algorithm is guarantee to compute a linear separator, if one exists,
it might have a long convergence time. Also, the resulting separator might have a very small
margin. (In the recitation of lecture 5 you saw how to modify the Perceptron algorithm to
generate a separator with a “good margin”.)

6.3 Selecting a good linear separator

Figure 6.6 gives various separators for a set of data points. Clearly a separator that has a
large error on the data is not desirable. However, there are many consistent linear separator
(which have no error on the data). One reasonable criteria is to request a maximum margin.
Intuitive reasons are that such a classifier is robust against small perturbations in the data.
Also, if we interpret the value of wtx + b as a confidence, it give higher confidence for all
examples in the data.

Figure 6.6: Possible linear separators

Let us first discuss the influence of the weight vector w (see Figure 6.7). Any point x on
the hyperplane satisfies wtx + b = 0. This implies that if we take two points x′ and x′′ on

4 Lecture 6: November 17

Figure 6.7: What is the w? Figure 6.8: What is b?

the hyperplane, we have both wtx′ + b = 0 and wtx′′ + b = 0. Therefore wt(x′ − x′′) = 0,
which implies that w is perpendicular to plane.

In order to understand the influence of b, consider the distance from the hyperplane to
the origin (see Figure 6.8). The distance from the hyperplane to the origin can be computed
by the following optimization:

min‖x‖
s.t. wtx+ b = 0

We can simplify the optimization by replacing ‖x‖ by ‖x‖2, since the maximization will give
an identical results. Furthermore, recall that ‖x‖2 = xtx and we have

minxtx

s.t. wtx+ b = 0

Let us now formally solve this simple optimization. We first write the Lagrangian

L(x, λ) = xtx− λ(wtx+ b)

We take the derivative w.r.t x and get

d

dx
L(x, λ) = 2x− λw = 0

This implies that x = (λ/2)w. Now we can use the hyperplane equation to compute λ and
get

wt(
λ

2
w) + b = 0

6.3. SELECTING A GOOD LINEAR SEPARATOR 5

This gives

λ =
−2b

wtw
now we can compute x,

x =
λ

2
w =

−b
wtw

w

We can now compute the distance, which is the norm of x,

‖x‖ =
√
xtx =

√
(v)t(

−b
wtw

w) =
b

wtw

√
wtw =

b√
wtw

=
b

‖w‖
Note that our problem is scale invariant, since multiplying w and b by a fixed positive

constant c would give the same classification, i.e. sign(wtx + b) = sign((cw)tx + cb). We
can verify that the distance is also scale invariant, since

cb

‖cw‖
=

b

‖w‖

6.3.1 Support vectors and margin

Which points influence the hyperplane that we select? Clearly only the points which are
the closest to the decision boundary. Any other point, event if we delete it, will not change
the maximum margin hyperplane. We can now use out degree of freedom in selecting the
scale. We can set the margin to be 1. Namely, for the positive support vectors x we have
wtx+ b = 1 and for the negitive support vectors x we have wtx+ b = −1. Equivalently, we
can require that

min
x
|wtx+ b| = 1

Once we fixed the scale in the above way, we will show that the maximum margin is
exactly 2/‖w‖. the computation is very similar to the computation of the distance from the
origin.

Let xn be a support vector, and we like to compute its distance from the hyperplane
wtx+ b. The distance between xn and any point x on the hyperplane can be decomposed to
a vector on the hyperplane and a vector perpendicular to the hyperplane, i.e., in the direction
of ŵ = w/‖w‖. The distance in the direction of ŵ, of the vector xn − x is |ŵ(xn − x)|. This
is done as follows,

|ŵt(xn − x)| = 1

‖w‖
|wtxn − wtx| =

1

‖w‖
|wtxn + b− wtx− b| = 1

‖w‖
|wtxn + b| = 1

‖w‖
where the third equality uses the fact that wtx+ b = 0 and the fourth uses the fact that we
scale the points such that wtxn + b = 1.

This implies that the distance in each direction is 1/‖w‖ and therefore the margin is
2/‖w‖.

6 Lecture 6: November 17

6.3.2 SVM optimization

We would like to maximize the margin. We can write the following optimization problem:

max
1

‖w‖
s.t. min

n
|wtxn + b| = 1

We would like to turn the optimization to a more conventional form. We can replace
|wtxn+b| by yn(wtxn+b), which is linear in w and b. Instead of requiring a value of 1 for the
closest point xn, we can require a value of at least 1 to all points. Since the maximization
of 1/||w|| acts to reduce the values of the form wtx+ b, for at least one point the inequality
will be tight.

We can also replace the maximization of 1/‖w‖ by the minimization of 0.5‖w‖2 and get
the following.

min
1

2
wtw

s.t. yn(wtxn + b) ≥ 1 ∀n = 1, . . . , N

Recall that w ∈ Rd and b ∈ R.

This is a constraint optimization and the solution can be derived based on the lagrangian
multiplies. Since we have inequality constraints, the optimization can be done through the
Karush-Kuhn-Tucker (KKT) conditions. Below, we provide a self-contained explanation that
does not require the KKT theorem.

We start by deriving the lagrangian formulation.

L(w, b, α) =
1

2
wtw −

N∑
n=1

αn(yn(wtxn + b)− 1)

where we minimize w.r.t. w and b and maximize for αn ≥ 0, i.e., minw,b maxα L(w, b, α).
One can view the role of αn as controlled by an adversary. If some constraint is violated,
namely yn(wtxn + b) < 1, then the adversary can set αn =∞ and L =∞. Therefore, in the
solution we will have all the constraints satisfied. In addition, if yn(wtxn + b) > 1 the the
adversary will set αn = 0. In this case we are simply maximizing (1/2)wtw subject to the
constraints.

We now consider the gradient of L w.r.t. w and b in order to minimize L. In order to
do so, there is an implicit assumption that minw,b maxα L(w, b, α) = maxα minw,b L(w, b, α),
which is the case due to a theorem called Slater’s condition. This topic is outside the scope
of our course.

6.3. SELECTING A GOOD LINEAR SEPARATOR 7

∇wL = w −
N∑
n=1

αnynxn = 0 =⇒ w =
N∑
n=1

αnynxn

This implies that given the solution α we can compute the weights w.
For the derivative w.r.t. b we have,

d

db
L = −

N∑
n=1

αnyn = 0 =⇒
N∑
n=1

αnyn = 0

This implies a restriction on the αn.
we can now substitute the two constraints in L,

L(α) = −1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
t
ixj +

N∑
i=1

αi

where we are maximizing w.r.t. αi ≥ 0 and
∑N

i=1 αiyi = 0.
We can write this as a quadratic program

min
α
αtMα + (−1t)α

s.t. ytα = 0

0 ≤ α

M =

 y1y1x
t
1x1 y1y2x

t
1x2 . . .

...
...

...
yNy1x

t
Nx1 yNy2x

t
nx2 · · ·

we need to show that the matrix M is positive semi-definite. (Note that M is a constant

matrix that depends only on the inputs.) We can rewrite M as AtA where the i-th column
of A is yixi. This implies that M is positive semi-definite (note that for any z we have
ztMz = ztAtAz = ‖Az‖2 ≥ 0.)

We can contrast this with the primal form:

min
1

2
wtw

s.t. yn(wtxn + b) ≥ 1 ∀n = 1, . . . , N

Comparing the primal and the dual:

• Variables: The primal has d + 1 variables (w and b) and the dual has N variables (α
one per example)

8 Lecture 6: November 17

• Constrains: The dual has only non-negatively constrains and one equality constraint.
The primal has N constraints,one per margin.

Given a solution to the dual α, we can compute the weights using w =
∑N

i=1 αiyixi.

Recall that due to the adversary role α plays in the optimization, for all n the following
equality holds: αn(yn(wtxn+ b)−1) = 0. For any point n for which αn > 0, this implies that
yn(wtxn + b) = 1. Therefore, this point is a support vector.(Its margin from the hyperplane
define by w is minimal.)

We need to compute the parameter b. Given any support vector n, we have that yn(wtxn+
b) = 1. This implies that

b = yn − wtxn
For numerical stability, it is better to average multiple support vectors, and not a single one.

Given the dual solution, we can define the decision boundary as

f(x) = (
N∑
i=1

αiyix
t
i)x+ b =

N∑
i=1

αiyi(x
t
ix) + b.

6.3.3 Leave One Out (LOO) error bound

We will show a rather simple bound for the Leave One Out (LOO). More interesting and
sophisticated bounds exists for the SVM, based on the margin and are independent from the
dimension size d.

The main observation for the LOO is to notice that any data point which is not a support
vector does not influence the solution of the maximum margin. We can give two intuitive
proofs of this fact.
Geometric interpretation: All the support vector have the same distance from the hy-
perplane w. If there is a hyperplane w′ that can increase the margin, then we should be able
to increase the margin of w (by taking a small step in the direction of w′).
Optimization interpretation: We are solving the following problem:

min
1

2
wtw

s.t. yn(wtxn + b) ≥ 1 ∀n = 1, . . . , N

Deleting a constraint can only create a better solution (in our case, smaller ‖w‖)). If the
deleted constraint is not a support vector, we have the same solution. (If it would improve
the solution to w′, we can take a small step from w to w′ and still have a feasible solution in
the optimization problem with a lower cost).

The number of mistakes we can make in the LOO is at most the number of support
vector. Therefore, the LOO error is at most #SV/N , where #SV is the number of support
vectors.

6.3. SELECTING A GOOD LINEAR SEPARATOR 9

6.3.4 Non-realizable case

We can add slack variables to support the margin requirement. Formally we replace the
“hard” constraints yn(wtxn + b) ≥ 1 by “soft” constraint yn(wtxn + b) ≥ 1 − ξn and ξn ≥ 0.
For ξn = 0 we have the required margin constraint. For ξn ∈ [0, 1], we have a correct
classification, but have a smaller margin than we desire. For ξn > 1 we have an error.

The new optimization problem is,

min
1

2
wtw + C

N∑
i=1

ξi

s.t. yn(wtxn + b) ≥ 1 + ξn ∀n = 1, . . . , N

ξn ≥ 0

A few comments

• The program is always feasible. We can always set ξn large enough and get a feasible
solution.

• C is the regularization parameter. Small C allows to ignores constraints more easily.
Large C forces to consider the constraints more. At the extreme C = ∞ is the hard
constraints.

• We still have a unique minimum.

• Pain: We have one more parameter to tune. even more confusing is that C relates two
quantities which are different (weights magnitude and the errors).

We can re-derive the the dual constraints. The only difference is that now we have
αn ≤ C.

Consider the constraint yn(wtx+ b) ≥ 1− ξn. Let f(x) = wtx+ b, the hypothesis we are
using. Then the constraint is ynf(xn) ≥ 1− ξn. When we incorporate the constraint ξn ≥ 0
we have

ξn = max{0, 1− ynf(xn)}

This is essentially the hinge loss with margin 1. We can view the hinge loss as upper bounding
the classification loss. While it is not the loss we would have developed in an ideal world, the
main benefit of the hinge loss is that it is computationally tractable (unlike the classification
loss). In addition, a small hinge loss implies a small classification loss. So at least in one
direction we have a correct bound.

10 Lecture 6: November 17

6.3.5 multi-class SVM

There are a few suggestions how to extend the SVM framework to work with multi-class
(beyond the binary classification). However, most of the methods have a limited success.

The popular methods for handling multi-class is a reduction to classification, and then
using known classifiers (such as SVM). There are two popular reductions, one vs all and one
vs one.

In one vs all we build a classifier per class, to predict if a given input belongs to a class
k. If multiple predictors claim that the input belongs to their class, we select the one with
the highest decision value, i.e., y(wtx+ b).

In one vs one we build a quadratic number of classifiers, trying to separate each two
classes. Given a point, we run all the classifiers, and select the class that the highest number
of classifiers “voted” for.

6.3.6 Practical advice

1. Avoid Matlab implementation. For some reason it is very slow. You can use libsvm
which can be downloaded from http://www.csie.ntu.edu.tw/ cjlin/libsvm/ or for
the linear case http://www.csie.ntu.edu.tw/ cjlin/liblinear/

2. Play with C, this is more an art, and depends on the input.

3. Avoid unbalanced classes. This is especially important for the un-realizable case (which
dominates reality)

